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Abstract-This study uses a two-dimensional discrete-element simulation to determine the effective thermal 
conductivity and self-diffusivity-uantities that depend on the random motions of particles within a 
granular material flow. The simulations are performed for solid fractions from 0.015 to 0.68 and for 
different Biot-Fourier numbers. The assumptions used in the simulations are consistent with dense-gas 
kinetic theory ; hence, the simulation results are shown to compare well with the self-diffusivity based on 
kinetic theory predictions. For the heat transfer problem, the analysis differs from classic kinetic theory 
since the particles can exchange heat with the surrounding fluid. For Biot-Fourier numbers much less than 
1. the effective conductivity from the simulations coincides with kinetic theory predictions. As the Biot- 
Fourier number increases above 0.1, the results deviate considerably from the classic analysis, but can be 
predicted using a modified kinetic theory approach. The simulation is a powerful technique, which can be 
extended to problems that are not consistent with kinetic theory assumptions. 0 1997 Elsevier Science 

Ltd. 

INTRODUCTION 

Flows of granular materials describe a class of two- 
phase flows in which the interstitial fluid plays a neg- 
ligible role in the mechanics of the flow. Examples 
include the transport of ore, coal, mineral concentrate, 
sand, grains, food products, detergents, fertilizers and 
pharmaceutical tablets. Since viscous drag forces are 
not important in the flow of the material, much of the 
recent analytical work has developed from dense-gas 
kinetic theory [l-3]. In addition, discrete-element 
simulations, which are similar to molecular dynamics 
simulations, have been used to study the rheological 
properties of granular flows [4-71. 

Often flows of granular materials are accompanied 
by associated heat and mass transfer processes such 
as occurs in the drying, sterilizing, heating or cooling 
of materials like alfalfa meal, calcium carbonate, coal 
fines, sewage sludge, lime, soda ash and gypsum [8- 
121. Granular flows with heat transfer also occur in 
rotary kilns [13, 141, which are used for calcination, 
pyrolysis and sintering of a variety of particulate 
materials. This current work examines heat transfer 
processes associated with granular material flows by 
using both dense-gas kinetic theory and discrete 
element simulations. 

Following the analogy between granular flows and 
molecular motions, the term granular temperature has 
been used throughout the literature as a measure of 
the specific kinetic energy of the random motions of 
the particles [l&3, 151. Consider for example, the flow 
of material down an inclined chute. The overall flow 

rate of the material is associated with the average 
speeds of all of the particles. However, because the 
particles collide with other particles and because of 
local regions of variable particle concentration, the 
individual particles follow a tortuous path in descend- 
ing the chute. The granular temperature of this flow 
would be determined by averaging the squares of the 
velocity fluctuations in the three directions that the 
particle can move. An accompanying heat transfer 
process could be envisioned by considering the chute 
to be heated to a temperature different than the tem- 
perature of the particles that were entering the chute 
[ 11,121. Associated with this heat transfer process, one 
would expect to find an enhancement of the thermal 
conductivity due to the internal mixing of the particles 
[16, 171. The focus of this study is the enhancement 
of the thermal transport due to the mixing within a 
granular flow. 

Although the discrete element simulations have 
been used to investigate the dynamics of granular 
flows, it has not been previously extended to heat 
transfer problems. One important aspect of the heat- 
transfer discrete-element method is the inclusion of 
the interstitial fluid. In determining the dynamics of a 
flow, the interstitial fluid is neglected-as if the par- 
ticle were colliding in a vacuum. For the heat-transfer 
process, however, the fluid phase is critical since the 
particles exchange heat with the fluid. Since the fluid 
phase is gaseous, the heat capacity is relatively small 
compared with that for the solid phase. In addition, 
unlike fluidized beds or suspensions, the motion of the 
fluid phase results solely from the particle motion. 
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NOMENCLATURE 

A particle surface area per unit length 
BiEij Biot&Fourier number, ii(r~.(:) 
c specific heat of particle 
C velocity 
C average speed 
ti particle diameter 
D self-diffusion coefficient 
A,e internal energy relative to surrounding 

fluid 
,f(C) Maxwellian velocity distribution 

function 
,~Jv) radial distribution function 
II heat transfer coefficient 
k,, effective conductivity from kinetic 

theory 
k \,“I effective conductivity from 

simulation 
I distance particle travels between 

collisions 
L length of computational domain 
117 mass per unit length 
II particle number density (number per 

unit arca) 
N number of particles 

Y heat flux 
t time 

T temperature 

jc collision interval 
u particle velocity 
C’ non-dimensional velocity, u/u,,, 

%l average particle speed 
.Y. 1’ Cartesian coordinates 
A.;-,, A!,, displacement in i or j direction. 

Greek symbols 

P thermal parameter. u,,rr!L 
~\ temperature gradient 
A mean free path 
I solid fraction 

/’ density of a particle 

(i, angular coordinate 

(4 
thermal time constant, mC/(hA) 
nondimensional temperature 

t time between collisions 
Y granular temperature. 

Subscripts 
f surrounding fluid 
i, j i or j direction 
I location I 
0 initial 
.\-. I‘ .\-- or ),-component. 

Hence, the fluid phase velocities are smaller than the 
velocities of the solid phase. For this work, the advec- 
tion of the fluid phase is neglected in comparison 
to that for the solid phase, but the energy exchange 
between the particle and the fluid is integral to the 
analysis. 

The first problem that has been considered is simple. 
the particles have random trajectories, but there is no 
overall motion of the bed. The particles are perfectly 
elastic and as a result the kinetic energy of the bed is 
constant. A thermodynamic temperature gradient is 
imposed across the bed. The situation is not physically 
possible and is much simpler than the chute flow 
example, but it allows for the development of the 
discrete-element approach and it is consistent with the 
assumptions involved in the kinetic theory analysis. 
The purpose is to calculate the rate of energy trans- 
ferred by the motion of the particles for a range of 
particle number densities and thermophysical proper- 
ties. The two important nondimensional parameters 
are the solid fraction and the particle Biot-Fourier 
number, which represents for a particle the ratio of the 
time between collisions to the thermal time constant. 

The discrete-element simulation uses a hard-particle 
model so that the collisions are instantaneous and 
binary. The temperature of the particle is determined 
from the solution to the unsteady energy equation for 

a particle at a uniform temperature. The energy flux 
is determined by summing the energy brought by all 
the particles across a slice within the flow. In addition. 
the simulation is also used to predict the self-diffusion 
coefficient, which is a measure of the internal mixing 
of a flow [l&22]. The kinetic theory analysis is used 
to compare with the numerical simulations and to 
provide analytical representations for the effective 
thermal conductivity and the diffusion coefficient. The 
analysis and follows closely from the earlier results by 
Hsiau and Hunt [21] and Hsiau [23]. However, the 
present work concerns two-dimensional systems, since 
the computation time for three-dimension systems is 
considerably greater. 

KINETIC THEORY ANALYSIS 

Following the work by Hsiau and Hunt [21], con- 
sider a single particle that is traveling through a fluid 
with an imposed temperature gradient, 7. The particle 
Biot number is small, so that the energy equation is a 
balance between the time rate of change of the internal 
energy of the particle and the heat transfer rate 
between the particle and the fluid, 
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where T is the particle temperature and T, is the tem- 
perature of the surrounding fluid. Unlike the Hsiau 
and Hunt study, this work considers a two-dimen- 
sional system so that M is the mass per unit length of 
the cylindrical rod and A is the surface area per unit 
length. The two-dimensional particle has an initial 
temperature equal to that of the surrounding fluid T,. 
The particle moves a distance I from its initial position 
to a new position in which the fluid temperature has 
a temperature of Tfl = T,,+ I,?, where 1, is the _r com- 
ponent of I, I, = lcos cp and cp is the angle with the 
r-axis. Assuming that the particle travels in the J’- 
direction at a constant speed C, the particle’s tem- 
perature at the new position is 

T= T,,-C,ri{l-exp[-I,/(crC,)]j (2) 

using c as the thermal time constant, rr = ~c/(hA). 
Hence, as the thermal time constant approaches zero, 
the particle temperature approaches that of the sur- 
rounding fluid. The internal energy of the particle 
relative to the surrounding fluid at the location I is 

Ae=~?lc(T-T,,) = -mcC,crl;{l-exp[-l,/(aC,.)]}. 

(3) 

The heat flux in they direction is found by integrating 
the product of C,. and the internal energy of the par- 
ticles over the entire velocity space [2 1, 231 : 

ql, = nAeC,f(C) dC 
s 

(4) 

where n is the particle number density and the 
velocity distribution function, ,j(C), is the local 
Maxwellian velocity distribution function. For two 
dimensions, the Maxwellian term is ,f(C) = 
1/(2rrY) exp [ - C2/(2Y)] in which Y is the granular 
temperature [3], 

‘P = f 
s 

C’(C) dC. (5) 

The velocity space is dC = CdCdq and C, = Ccos cp. 
After substituting in the expression for Ae, C,, f(C) 
and dC and integrating over q from 0 to 2n, the 
equation becomes 

q, = -yJ:Ci[l-exp(-&)l 

x exp 

The non-dimensional parameter I,/(aC,) can be 
simplified to l/(K). This parameter, //&I’, is a ratio 
of the time between collisions to the thermal time 
constant of the particles. Since a particle changes vel- 
ocity when it collides with another particle, Hsiau and 
Hunt used the characteristic length, I, as the mean free 
path, 1. In that work, the authors assumed that j./(crc) 
was small for all particle speeds ; hence, for these con- 

ditions, the exponential in equation (3) can be 
expanded for small values of the argument, which 
results in Ae = -mc&)cos q. Using this expression, 
the equation above can be integrated to find 

The constant (n/8)“’ differs from the constant found 
in Hsiau and Hunt [21], 2$/(3$), because the 
present analysis is for two rather than for three dimen- 
sions. Following the Hsiau and Hunt analysis, the 
mean free path is defined from the product of the 
mean speed, C and the collision interval, t,. For two 
dimensions, the mean speed is 

C = (7#/2)” 

and the collision interval is 

(8) 

t, = 1/[2&zal4” (v)Y I “1 

hence, the mean free path is 

(9) 

i. = Ct, = 1/[2&2g,,(v)]. (10) 

In the above expressions, d is the particle diameter, v 
is the solid fraction and g,,(v) is the two-dimensional 
radial distribution function evaluated when the par- 
ticles are in contact. The work by Jenkins and Rich- 
man [3] suggests the use of the following equation : 

g,,(v) =(16-7v)/[16(1 -v)‘]. (11) 

This representation follows from the analysis by 
Henderson [24], which considered the equation of 
state for a hard two-dimensional fluid. The Henderson 
study indicates that the equation of state that cor- 
responds with equation (1 I) is in good agreement with 
the equation of state found in two-dimensional Monte 
Carlo simulations. 

Noting that the solid fraction can be determined as 
follows, v = nnu”/4 and that nm = pv where p is the 
density of the solid particles, the two-dimensional 
effective conductivity from kinetic theory analysis, kkt, 
non-dimensionalized by pcd Y’“, is as follows : 

k,, 4, 
$2 

p= _-= 
pcdY”2 l;pcdY ‘.‘2 32g, (1’) (12) 

Hence, the non-dimensional conductivity decreases 
with solid fraction. Using the above definition for 
solid fraction, the mean free path found in equation 
(10) can be rewritten as 

2 &Tc 
d - 16vg,,(v) (13) 

If //(aC) is not assumed to be small, the exponential 
term in the evaluation of Ae in equation (3) cannot be 
expanded. However, the integral in equation (6) can 
be evaluated approximately if certain assumptions are 
made about the ratio of the characteristic length to 
the particle speed, l/C. In gas kinetic theory, the mean 
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free path varies with speed of the molecules, i(C) 
[25] ; however, the ratio of the n(C)/C is not a strong 
function of the molecular speed. Hence, Hsiau [23] 
assumed that l/C z t, = i/c and used this constant to 
integrate equation (6). For two dimensions, the result 
is 

yI = - nmcoYy{ 1 - exp [-i./(&)] 1 (14) 

and using the definitions for I, C and v, the expression 
for the effective conductivity becomes, 

Fig. I. Computational cell with periodic boundaries inot all 
k kl 41, of the periodic images are shown) 

pcdY”’ ypcdy’V’ 

=Z{l-exp[-i/(OC)]l. (15) collide and from their post-collision speeds. There are 
d no imposed external forces acting on the particles. 

Note that the heat transfer coefficient has been 
assumed to be independent of the speed of the particle. 
The parameter, A/(&), is referred to as the Biott 
Fourier number (BiFo) in Hsiau and Hunt [21]. In 
equation (15), if BiFo is assumed to be much less than 
one, the non-dimensional effective conductivity is 

The present work also assumes that there is no energy 
dissipated in a collision; hence, the equation for the 
dynamics of an encounter are determined by the con- 
servation of kinetic energy and linear momentum, 
which are the same relations used in the kinetic theory 
of gases [25]. 

Figure 1 is a representation of the computational 

k !a.&~,~<< I $;I domain containing N particles. The com&tational 

pcdY’~* KG70 (\,)I 
(16) domain is square of size L by L and the origin of the 

-Y-J coordinate system is placed in the lower left-hand 
which is greater than the expression found in equation corner. The particles have velocities u, and u,. One 
(12) by a factor of 4/rr = 1.273. half of the particles are initially assigned random s 

Besides the effective thermal conductivity resulting 
from the motions of the particles, it is possible to use 
kinetic theory to calculate the self-diffusion coefficient. 
Hsiau and Hunt [21] used a method based on the 
solution of the Boltzmann equation to derive the self- 
diffusion for granular flows. The same expression was 
also derived by Savage and Dai [ 181 by defining the 
self-diffusion coefficient in terms of the velocity auto- 
correlation function. The two-dimensional result is 
included in the thesis by Dai [26] and the subsequent 
paper by Oger et al. [23] and can be written as follows 
for perfectly elastic disks : 

DISCRETE ELEMENT SIMULATIONS 

and J‘ velocities with values between -0.5 and 0.5. 
The other half of the particles are given velocities 
opposite in sign, but equal in magnitude to the first 
group of the particles. This initial state ensures that 
their is no net motion of the particles. Hence, the sums 
XU, and Zu, over all N particles are zero. The velocities 
U, and U, are nondimensionalized using the average 
speed, u,. so that U, = u,,/u,,, where u,,, is calculated 
from the average of the square-root of the sum of 
the velocities squared, U, = [X(ut +u:)’ ‘];IN. The 
initial nondimensional temperatures of the par- 
ticles, fl = [T- T(_r = O)]/[T(J, = L) - T(_r = O)], are 
randomly assigned values between 0 and I 

As a particle travels, the temperature of the particle 
can be determined from the solution of the unsteady 
energy equation as given in equation (I). As in the 
kinetic theory analysis, a temperature gradient is 
imposed in the l-direction. If the particle’s last J’- 

The discrete element simulations are performed in position and temperature are_r and O,, the non-dimen- 
two parts. The first part is similar to other hard- sional temperature of a particle travelling at a J’- 
particle simulations [&6] in which the position and velocity ~1, after some time r is as follows : 
velocity of each particle in the simulation is calculated 
and updated throughout the simulation. In addition, 
the temperature is also calculated in the present simu- 

H(x,.r) = (O,+y-f)exp(-ij 

lation. The second part of the simulation uses the 
temperatures of the particles to calculate the heat flux 

u,(r-g) 
(18) 

across the flow due to the random motion of the 
+.;+‘. 

particles. Furthermore, since the particle travels at a constant 
In hard-particle simulations, the particle collisions velocity between collisions. the time r. is determined 

are modeled as binary, instantaneous collisions. by r = (J,--)‘,)/u,. Introducing the non-dimensional 
Between collisions, particles follow trajectories that velocity, U = u/u, and the parameter b = u,,o/L, the 
are determined from the angle at which the particles equation above can be rewritten as 



Discrete element simulations for granular material flows 3063 

+y/L- UJ3. (19) 

The current program is commenced by specifying 
the dimensions of the computational cell, the particle 
diameter, the number of particles within the cell, the 
thermal parameter b and the total time for the com- 
putational run. The program initializes the tem- 
peratures and speeds of the particles. Based on the 
initial velocities and positions of the particles, the 
program computes the time that each of the N par- 
ticles collides with another particle. These possible 
collisions are then ordered into a collision list with the 
first entry corresponding to the collision that occurs 
after the shortest period of time. In this manner, the 
incremental steps are determined by the collision times 
and are not set as an input parameter to the program. 
The collision list is then updated and reordered after 
calculating the next collisions for the two particles 
that were involved in the initial collision. The program 
continues by following the collision list and updating 
and reordering collisions. The program concludes 
when the total time (the sum of all of the collision 
times) exceeds the maximum time specified as an input 
parameter. Similar to other discrete element 
programs, the computational algorithm can be modi- 
fied to allow for a variable coefficient of restitution 
(ratio of rebound speed to impact speed) and a non- 
zero coefficient of friction [4-61. 

Both the x and y boundaries are periodic. Hence, a 
particle leaving the top (v = L) with velocities U: and 
u:. is reintroduced at the bottom (y = 0) with the same 
x and y velocities, u: and uI. Similarly, for particles 
leaving either the bottom, left or right sides of the 
computational cell. For the temperature field, the per- 
iodic conditions are slightly different. If a particle 
leaves the right or left side, it is reintroduced at the 
opposite side with the same temperature. However, to 
impose a temperature gradient in the y-direction, 
when a particle leaves the top with temperature B’, it 
is reintroduced at the bottom with a temperature, 
Q’- 1 ; if it leaves the bottom at temperature 0”, it is 
reintroduced at the top with temperature 8” + 1. 

The program proceeds by calculating all collisions 
that occur over the specified time period. The infor- 
mation that is stored at each collision is the time of 
the collision, the particles that are involved in the 
collision, the particles’ x and y locations, velocities 
and the particles’ temperatures. This information is 
then used as input to the second program, which cal- 
culates the effective thermal conductivity of the flow. 
The computational cell is divided into several hori- 
zontal slices. The heat transferred across the slice is 
used to determine the effective thermal conductivity 
based on results from the discrete element simulation. 
The heat transferred across a slice is as follows : 

-k,,,LyAt = 1 (Ae)- c (Ae) (20) 
helow abuve 

where AZ is the time period over which the sum is 

calculated. The first sum is done for particles that 
cross the horizontal slice from below and the second 
is for particles that cross the slice from above. As in 
equation (3), Ae is the energy per particle, which is 
evaluated relative to the temperature at the y-location 
of the horizontal slice. 

The diffusion coefficient can also be evaluated from 
the simulation. Savage and Dai [ 181 and Campbell 
[19] both studied diffusion for a three-dimensional 
system with an overall shear. Campbell used two 
methods : a particle tracking technique and a method 
based on the velocity correlation and found that the 
two techniques gave very similar results for solid frac- 
tion up to 0.5. Savage and Dai also used the velocity 
correlation method. In the present work, the particle 
tracking method is used because the method does not 
require any additional calculations. The diffusion 
coefficient tensor D,, is defined from the following 
equality for long times, 

D,, = htit(Ax,Ax,)/(2t). (21) 

Hence, D,,, D,, and D, can be calculated by tracking 
the x and y displacement over an appropriate time 
period. Since there is no difference between the x- and 
y-directions, the corresponding diffusion coefficients 
should be approximately equal. In addition, the D,, 
coefficient should approach zero for long times. 

RESULTS 

The discrete element simulations were performed on 
a square control volume. For the lowest solid fraction 
(v = 0.015) the length of the cell was 50 particle diam- 
eters and the number of particles was 50; for the 
highest solid fractions the cell length was reduced to 
10 particle diameters with 70 particles for v = 0.55, 80 
particles for v = 0.63 and 86 particles for v = 0.68. 
The total time of the simulation depended on the solid 
fraction and the mean speed of the particles. The 
simulation was considered complete when the effective 
conductivity reached a value that did not vary con- 
siderably (-&5%) with time. For the lowest solid 
fraction the total computational time divided by the 
average time between a collision (or average num- 
ber of collisions per particle) was approximately 
1200. For the highest solid fraction, the ratio of the 
total time to the time between collisions was in- 
creased to approximately 30 000. 

Figure 2 shows the results for the variation in the 
average mean free path divided by a particle diameter 
from the simulation, and compares with the kinetic 
theory result given in equation (13). The results from 
the simulation appear to follow exactly the kinetic 
theory predictions. The close agreement parallels the 
results by Henderson [24], which indicates close agree- 
ment between the approximate equation of state based 
on equation (11) and the exact result. 

The diffusion coefficients were calculated by using 
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Fig. 2. Comparison of mean free path (I./d) as a function of solid fraction from the kinetic 1 
and the discrete element simulations. 

the particle tracking method. Figure 3 shows a typical 
result of the average of the square of the particle 
displacements from their initial position in both the I 
and J‘ directions, ((A-Y)‘) and ((A),)‘), as functions 
of time. The solid lines represent a least-squares fit to 
the data, and the lines are not forced through the 
origin. The diffusion coefficients. D,, and D,,, are then 
determined from the slope of the line ai. given by 
equation (21). In addition, the value for the coefficient 
D,, was also calculated. This coefficient was always 
an order of magnitude smaller than the values for 
D,,, and D,,. The magnitude of the coefficient also 
appeared to decrease as the computation time 
increased, which suggests that for a sufficiently long 
computation, the coefficient should approach zero. 
The non-dimensional self-diffusion coefficients. 
D,,/dY’” and 0,.,/d’%” ‘, are presented in Fig. 4. Also 
shown are the results from the kinetic theory. equation 
(17). Again, the agreement is good between the simu- 
lations and the experiments. It is interesting to note 
that in Savage and Dai [ 181 the three-dimensional 
simulation results for the self-diffusion coefficient are 
compared with the results from the kinetic theory. The 
comparison shows that the self-diffusion coefficients 
from the simulations are larger than the kinetic theory 
predictions and the difference increases with solid frac- 
tions. In these simulations. there is an overall motion 
of the particles because of the imposed shear, the shear 
flow introduces an anisotropy to the flow and results 
in preferred collision angles as shown by the simu- 
lations of Campbell and Brennen [3]. The result of the 
shear is to increase the self-diffusion coefficient from 
an unsheared flow, with the diffusion coefficient in the 
direction of the imposed flow being the largest. In the 
kinetic theory analysis, the analysis assumes molecular 

.heory analysi? 

chaos, which means that random motions of particles 
are independently distributed. This assumption cer- 
tainly breaks down for sheared systems in which the 
collisions are anisotropically distributed [I 51. 

The results for the effective thermal conductivity 
are presented in Fig. 5. The value for the effective 
thermal conductivity determined by the discrete 
element simulations [results from equation (20)] 
is non-dimensionalized by the value predicted by 
the kinetic theory result given in equation (16), 

k,,,,‘k L,,H,,l,_~ ,. The ratios of the effective conduc- 
tivities are presented in terms of solid fraction and 
BiotGFourier number. The figure clearly shows that 
for BiFo greater than 0.1. the effective conductivity 
begins to decrease significantly from the kinetic theory 
analysis based on a BiFo cc I. The simulation also 
shows that results for the ratios of the effective thermal 
conductivity does not depend on the solid fraction. 

In addition, Fig. 5 also shows the results from the 
kinetic theory using equation (15) divided by the result 
in equation (16). The ratio of these two effective con- 
ductivities is 

k&k k,,Hibocc, = [l - exp(-BBiFo)]:BiFo. (22) 

The results from the simulation appear to be slightly 
smaller than the result corresponding to equation 
(22). This difference is probably related to the assump- 
tion that the distance a particle travels divided by the 
speed of the particle, l/C, equals the average collision 
time defined by I, = R/i’. Figure 6 presents results 
from the simulations that indicate the dependence of 
the time between collisions, l/C’, divided by the time 
between collision for all speeds, i/c, as a function of 
the dimensionless particle speeds, C/ii. All of the data 
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points represent an average over all particles within a 
given speed range. In addition, results are presented 
for three different solid fractions. The results show 
that the average time between collisions decreases as 
the speed of the particle increases. Hence, in the inte- 
gral in equation (6) the term { 1 - exp [-l/(K)]} is 
larger than { 1 - exp [-A/(&)]) for particles with 
speeds smaller than the average value. The converse 
is true for particles traveling at speeds larger than the 
average. However, the integral also contains the term 
C?exp( - C’jY), which is maximum at C = 1.22Y”‘*. 
Hence, the value of the integral would be weighted 
to reflect the faster particles more than the slower 
particles. As a result, the solution to the integral given 
by equation (14) would over predict the heat flux and 
the effective thermal conductivity, which is reflected 
in the results shown in Fig. 5. 

CONCLUSION 

This paper presents a method for using a discrete- 
element model to predict temperatures and effective 
thermal conductivities for flows of granular materials. 
The results from the two-dimensional simulation com- 
pare well with predictions based on dense gas kinetic 
theory. The present model makes several assumptions 
that are consistent with the kinetic theory, but which 
are not valid for most granular flows. However, many 
of these assumptions, as mentioned below, could be 
corrected in future models. In this regard, the present 
work serves as a benchmark study, which can be used 
to validate future programs. 

In any real flows, there is a driving force to the 
motion of the particles, such as gravity in flows down 
inclined chutes or channels, or motion of the bounding 
surfaces in Couette flows or vibratory flows. The 
inclusion of an overall flow changes the average 
motion of the particles and certainly affects the 
enhanced thermal conductivity. In addition, if there 
is a driving force, it would also be possible to examine 
flows with energy dissipation. In state-of-the-art 
discrete-element simulations, energy dissipation due 
to inelastic collisions and friction is commonly incor- 
porated into the collision models. However, a new 
feature would be to include the effect of the energy 
dissipation in the calculation of the particle tem- 
peratures. 

In granular flows, the presence of the boundary also 
critically affects the motion of the particles. Depend- 
ing on the physical characteristics of the boundary, the 
particles may roll, slide or bounce off of the bounding 
surface. Hence, for many granular flows, a slip con- 
dition must be used at the boundary. A temperature- 
slip condition might also be necessary for thermal 
problems in which the energy is transferred from a 
bounding surface. 

Finally, it might also be possible to consider non- 
isothermal particles and not rely on the assumption 

of a small particle Biot number. A simple correction 
to the model could also account for heat coefficients 
that vary with particle speed. 
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